[-empyre-] Towards [no] theory of digital poetics
Jim Andrews
jim at vispo.com
Sun Mar 15 16:58:09 EST 2009
to me, the interesting stuff isn't so much the question 'what is art', or
'what is digital poetry' as what is subsequently constructed/created.
why?
the proposition that 'X is art' or 'X is digital poetry' is a bit like an
undecidable proposition. undecidable propositions were created/discovered by
godel in the thirties.
recall that undecidable propositions cannot be false and, if well formed,
must therefore be true, but are unprovably true. the classic example is
'this proposition is not provable'. if it's false, then it's provable. and
if it's provable, then it's true, since only true propositions are provable
(in a consistent system). contradiction. so it cannot be false. hence it is
true. if so, then it is not provable.
'X is art' or 'X is digital poetry' never seems to be falsified very
convincingly. In this (playful) sense, they 'cannot be false'. so, if
well-formed (which they probably aren't), they must be true. but they aren't
convincingly provable, either. they are more or less axiomatic. when one
asserts that 'X is art' or 'X is digital poetry', one is basically laying
down an axiom.
and that is not so much the interesting part as what you build from such
assumptions.
such as web sites, books, and other bodies of work. and these are not so
much exclusively definitive of art or digital poetry as productively
explorative and constructive of the axioms that have been assumed.
similarly, in math/logic, one does not seek to determine which of euclidean
geometry and the various non-euclidean geometries is the one true geometry.
they are all relatively consistent (as consistent as one another), all
interestingly explorative and evocative of the worlds implied by their
underlying assumptions/axioms.
some axiom systems are more interesting than others in that they result in
richer worlds.
ja
http://vispo.com
More information about the empyre
mailing list